skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jamil, Ahsan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER) arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four different ML models and four arrays were used for the estimation of only six variables for locating and characterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-Newton in prediction of target width and height, which was attributed to numerical smoothing present in the Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site. 
    more » « less